El grafeno se ha convertido en un material muy popular en los últimos años, debido a su extraordinaria resistencia y a su poco peso. Puede ser generado despegándolo, literalmente, del grafito, o haciéndolo crecer en la parte superior de diversos materiales, lo cual hace que su producción sea rentable.
Los estudios han dado a entender que el grafeno también se puede utilizar como un material fotovoltaico convirtiendo la luz en electricidad. Usando un método espectroscópico de vanguardia, científicos de la Escuela Politécnica Federal de Lausana (EPFL, Suiza) y sus colaboradores han demostrado que mediante la absorción de un único fotón, el grafeno puede generar múltiples electrones que tienen la energía suficiente para conducir una corriente eléctrica.
El grafeno es fascinante en términos de la física fundamental, porque es mejor conductor de electricidad a temperatura ambiente que por ejemplo el cobre, lo cual lo hace ideal para circuitos ultrarrápidos. Además, se ha demostrado que conduce la electricidad después de absorber luz, lo que significa que también podría ser utilizado en dispositivos fotovoltaicos. Pero hasta ahora, el potencial del grafeno para la conversión eficiente de luz a electricidad no había sido bien entendida.
Esta es una tarea difícil, ya que la conversión se lleva a cabo en una escala de femto-segundos (una milbillonésima de segundo), demasiado rápido para las técnicas convencionales que detectan el movimiento de electrones. Para superar este obstáculo, Jens Christian Johannsen, del laboratorio de Marco Grioni de la EPFL, junto con colegas de la Universidad de Aarhus (Dinamarca) y de Elettra (sincrotrón de Trieste, Italia), empleó una sofisticada técnica llamada "espectroscopía de fotoemisión en tiempo-ultrarrápido y con resolución de ángulo" (trARPES). Los experimentos se llevaron a cabo en el Laboratorio Rutherford Appleton de Oxford (Inglaterra).
Con este método, una pequeña muestra de grafeno se coloca en una cámara de ultra-alto-vacío. El material recibe luego el impacto de un pulso bombeado ultrarrápido de luz láser. Esto excita a los electrones del grafeno, "elevándolos" a mayores estados de energía en los que realmente puedan conducir una corriente eléctrica. Mientras los electrones se encuentran en esos estados, la muestra de grafeno es golpeada con un pulso "sonda" retrasado en el tiempo que, literalmente, hace una foto de la energía que cada electrón tiene en ese momento. La secuencia se repite rápidamente en diferentes puntos de tiempo, como si fuera una película de animación, y captura la dinámica de los electrones en vivo.
Los científicos utilizaron muestras de grafeno "dopadas", lo que significa que añadieron o quitaron electrones del mismo por medios químicos. El experimento reveló que, cuando el grafeno dopado absorbe un único fotón, esto puede excitar a varios electrones y hacerlo proporcionalmente al grado de dopaje.
El fotón excita a un electrón, que luego "cae" rápidamente de vuelta a su estado fundamental de energía. Al hacerlo, la "caída" excita a otros dos electrones de media, formando un efecto en cadena. "Esto indica que un dispositivo fotovoltaico que utilice grafeno dopado podría mostrar una eficiencia significativa en convertir la luz en electricidad", explica Grioni desde la EPFL.
Los científicos han hecho la primera observación directa de este efecto multiplicativo, que convierte al grafeno en un bloque de construcción muy prometedor para cualquier dispositivo que se base en convertir la luz en electricidad. Por ejemplo, novedosos dispositivos fotovoltaicos que utilizaran grafeno podrían cosechar la energía de la luz en todo el espectro solar, con una pérdida de energía menor que los sistemas actuales.
Sobre la base de su tecnología de vanguardia y de su éxito experimental, los científicos planean ahora estudiar efectos similares en otros materiales bidimensionales, tales como el disulfuro de molibdeno (MoS2), un material que ya es foco de atención por sus notables propiedades electrónicas y catalíticas.
Busch Vacuum Solutions presenta la serie Cobra DH, una nueva generación de bombas de vacío secas de tornillo de alto rendimiento con un diseño especial para aplicaciones industriales muy exigentes.
El siguiente artículo explora los desafíos técnicos en el tratamiento de agua para la electrólisis del hidrógeno. Analiza requisitos clave como la calidad del agua, el monitoreo continuo y el control de parámetros de operación. En dicho contexto, veremos cómo...
La atracción de talento ha dejado de ser un proceso pasivo para convertirse en una prioridad estratégica en el sector industrial vasco. Así se puso de manifiesto en la jornada organizada en Bilbao por Aveq-Kimika, en colaboración con la iniciativa de transformación ekinBarri...
Techsolids ha publicado los resultados de su Encuesta de Coyuntura 2024 y Perspectivas 2025, especialmente relevante para dar a conocer la situación actual de un sector clave, ampliamente utilizado en múltiples industrias.
El consejero delegado de Enagás,Arturo Gonzalo, ha anunciado la firma del Grant Agreement para la recepción de 32,5 millones de euros de fondos europeos para los estudios e ingeniería la red troncal española de hidrógeno.
El miércoles 18 de junio a las 18:00 horas, se llevará a cabo un webinar sobre 'Instrumentación y estrategias de control de un horno de procesos', un evento clave para ingenieros y profesionales interesados en la automatización industrial.
Bajo el lema 'La cogeneración para un futuro industrial, eficiente, competitivo y descarbonizado', Acogen y Cogen España organizan el XXI Congreso Anual de Cogeneración, que en esta edición tendrá lugar el 14 de octubre en The Palace Hotel Madrid.
Las ferias Expoquimia y Equiplast, que se celebrarán del 2 al 5 de junio de 2026 en Fira de Barcelona, han iniciado una nueva etapa como plataformas estratégicas de negocio, innovación y conocimiento sectorial. Para ello, la organización ha constituido...
Comentarios