En este caso de éxito se estudia la optimización del consumo de agua de aporte en una instalación de la Comunidad Valenciana con ocho condensadores evaporativos. En él, Adiquímica, en función de su experiencia en el sector y a su software propietario para la simulación de equilibrios químicos e iónicos Adic-Ionic ®, permite un reaprovechamiento de agua de purga de la instalación y genera un ahorro de agua de aporte superior al 27%.
El tratamiento del agua en un circuito de refrigeración industrial presenta los siguientes objetivos:
Mantener el circuito en condiciones nominales de intercambio de calor. La utilización de antiincrustantes y compuestos dispersantes evita la deposición, en forma de incrustaciones, de sales de baja solubilidad u óxidos metálicos que podrían ofrecer una resistencia al flujo de calor en las superficies de intercambio disminuyendo el rendimiento del sistema.
Evitar el desarrollo de procesos de corrosión metálica. La presencia de ciertas especies químicas disueltas en el agua puede llevar al deterioro de las superficies metálicas tanto de las líneas de circulación de agua como de los propios intercambiadores.
El uso de inhibidores de corrosión específicos evita este tipo de procesos, alargando el tiempo de vida útil de la instalación y reduciendo los costes de mantenimiento del circuito.
Controlar el crecimiento microbiológico. Circuitos cerrados con elevados tiempos de residencia o circuitos semiabiertos en contacto con la atmosfera pueden sufrir procesos de contaminación microbiológica de distinta naturaleza.
Algunos de estos procesos están relacionados con fenómenos de corrosión debidos a la generación de subproductos del metabolismo bacteriano o a la propia desaparición de algunos inhibidores de corrosión.
El uso de productos de efecto biocida evita el crecimiento microbiológico, como por ejemplo la Legionella y sus efectos adversos en el circuito y, en algunos casos, en la salud de las personas.
En un circuito de refrigeración basado en un dispositivo de enfriamiento evaporativo como herramienta de disipación de calor, estos objetivos definidos anteriormente deben compatibilizarse con el del máximo ahorro posible en el consumo de agua. Sistemas basados en torres de refrigeración o en condensadores evaporativos presentan un cierto consumo de agua debido a la evaporación parcial del agua de recirculación y a las purgas de desconcentración salina que se aplican en el mismo.
El tratamiento químico aplicado y la estrategia de operación implementada deben permitir el máximo ahorro de agua posible en la instalación sin llegar a comprometer el rendimiento de intercambio de calor y la metalurgia del sistema.
Una vez optimizado el consumo de agua desde la fase de diseño del propio tratamiento pueden empezar a valorarse distintas estrategias de ahorro y reaprovechamiento de agua, en este caso del corriente de purga.
El caso presentado en este documento se basa en un circuito de climatización. Está ubicado en un centro logístico de almacenamiento y distribución de alimentos de la Comunidad Valenciana.
Cuenta con ocho condensadores evaporativos como elementos de disipación de calor. La composición del agua de aporte al circuito de refrigeración se detalla en la tabla 1. Las características de operación previas al estudio se detallan en la tabla 2.
Parámetro | Valor | Unidades |
pH | 7,7 | — |
Alcalinidad M | 2,2 | meq/L |
[Ca] | 71,3 | mg/L |
[Mg] | 18,1 | mg/L |
[Cl] | 46,3 | mg/L |
[NO3] | 57 | mg/L |
[SO4] | 63 | mg/L |
[PO4] | 0 | mg PO4/L |
Parámetro | Valor | Unidades |
Caudal recirculación | 1480 | m3/h |
Salto térmico | 5 | ºC |
Evaporación | 9,68 | m3/h |
Aporte | 20,1 | m3/h |
Purga | 9,68 | m3/h |
Otros | 0,74 | m3/h |
Factor de concentración | 2 | — |
Consumo anual de agua | 131300 | m3/año |
El software propietario Adic-Ionic® permite, a diferentes regímenes simulados de operación, calcular la distribución de especies químicas en el agua de recirculación de un circuito de enfriamiento evaporativo.
Esto es posible a partir de la composición analítica del agua de reposición al mismo. El uso de esta herramienta es imprescindible para simular el comportamiento del agua en el circuito y la predicción de los potenciales de incrustación de determinadas sales, entre ellas el carbonato de calcio (CaCO3) y el fosfato de calcio (Ca3(PO4)2). De esta forma, es posible la evaluación y validación de posibles estrategias operativas antes de su implementación en campo.
A partir de Adic-Ionic y la composición analítica del agua de reposición al circuito detallada en la tabla 1, se determina que, con un tratamiento químico adecuado, es posible operar a un factor de concentración superior al actual antes de empezar a detectar problemáticas de distinta naturaleza en el circuito.
Las figuras 1, 2 y 3 muestran los porcentajes alcanzados de los índices de sobresaturación máximos admisibles para las especies salinas de mayor susceptibilidad de precipitación en este tipo de circuitos. En concreto:
La figura 1 muestra los valores alcanzados en ausencia de tratamiento para un factor de concentración de 2 unidades.
La figura 2 muestra estos mismos valores con un tratamiento químico en base a Adiclene 1221 a 2 ciclos de concentración.
La figura 3 muestra los porcentajes alcanzados de los índices de sobresaturación a 3.15 ciclos de concentración con un tratamiento químico en base a Adiclene 1221.
Figura 1.- Porcentajes alcanzados de los índices de sobresaturación máximos admisibles para CaCO3, Mg(OH)2, Zn(OH)2, Ca3(PO4)2, CaSO4 y MgCO3 a las condiciones simuladas del agua de recirculación, factor de concentración 2 y temperatura de 45 ºC. Sin tratamiento químico.
Figura 2.- Porcentajes alcanzados de los índices de sobresaturación máximos admisibles para CaCO3, Mg(OH)2, Zn(OH)2, Ca3(PO4)2, CaSO4 y MgCO3 a las condiciones simuladas del agua de recirculación, factor de concentración 2 y temperatura de 45 ºC. Con tratamiento en base a Adiclene 1221.
Figura 3.- Porcentajes alcanzados de los índices de sobresaturación máximos admisibles para CaCO3, Mg(OH)2, Zn(OH)2, Ca3(PO4)2, CaSO4 y MgCO3 a las condiciones simuladas del agua de recirculación, factor de concentración 3.15 y temperatura de 45ºC. Con tratamiento en base a Adiclene 1221.
Tal como se observa en las figuras anteriores, mediante un tratamiento con Adiclene 1221 es posible aumentar el factor de concentración actual fijado en 2 hasta 3.15, con una repercusión importante en el consumo anual de agua en la instalación.
Los valores de operación se muestran en la tabla 3. La implementación de estas nuevas condiciones supone un ahorro de aproximadamente un 27% en el consumo de agua en la instalación.
Parámetro | Valor | Unidades |
Caudal recirculación | 1480 | m3/h |
Salto térmico | 5 | ºC |
Evaporación | 9,68 | m3/h |
Aporte | 14,63 | m3/h |
Purga | 4,5 | m3/h |
Otros | 0,74 | m3/h |
Factor de concentración | 3.15 | — |
Consumo anual de agua | 95592 | m3/año |
Ahorro de agua respecto actual | 27,2 | % |
Tabla 2.- Operación del circuito de refrigeración a las nuevas condiciones en base a las proyecciones hechas con Adic-Ionic.
Como medida de aprovechamiento de agua en el centro, se plantea el uso del agua de las purgas del sistema de refrigeración en los fluxores de los aseos.
Dado el tratamiento biocida implementado en el sistema de refrigeración, no obstante, es necesario neutralizar el principio activo utilizado previo a reutilizar el agua. Esto supone la instalación de una estación específica de tratamiento.
El esquema de la estación se detalla en la figura 4.
Figura 4.- Estación de tratamiento de purgas de refrigeración para su uso en fluxores.
Tal como se detalla en la figura 4, las purgas de los distintos dispositivos de enfriamiento evaporativo se conducen a un depósito pulmón contabilizándose a través de un contador con emisor de impulsos. La neutralización del principio activo biocida se realiza a dos niveles:
Primera etapa de neutralización en base al volumen de agua aportado al depósito de purgas.
Etapa de neutralización de afino. El agua del depósito se recircula y se efectúa una medición en continuo del principio activo biocida. Los valores detectados alimentan un lazo de control en el que una bomba dosificadora de neutralizante específico se pone en marcha a la frecuencia necesaria para el proceso de neutralización.
Todo estudio de reaprovechamiento del agua en un circuito de refrigeración debe responder en primer lugar a la siguiente pregunta. ¿Está el circuito operando a los ciclos de concentración óptimos en función de las características del sistema y a la composición del agua de reposición?
La operación óptima de un circuito de refrigeración es aquella que permite un consumo mínimo de agua de reposición sin llegar a comprometer las características nominales de intercambio de calor ni la metalurgia de las zonas de mayor criticidad.
En este sentido, la implementación de las proyecciones realizadas a partir del software Adic-Ionic en función de las características del circuito ha permitido una reducción del 27% en el consumo de agua de reposición del sistema.
Esta reducción es posible gracias a la operación a un mayor factor de concentración y a un tratamiento químico en base al producto Adiclene 1221.
La neutralización, en la corriente de purga, del principio activo biocida dosificado en el circuito de refrigeración permite la utilización del agua de purga en los fluxores.
Esto significa un ahorro en el consumo global del centro a partir de la reutilización de un agua que en prinbcipio quedaba descartada. En este caso es necesaria la implementación de un sistema de neutralización adaptado al tipo de biocida utilizado.
Por Jordi Ruiz | Doctor en Ingeniería Química | Departamento I+D+i | Adiquímica
Busch Vacuum Solutions presenta la serie Cobra DH, una nueva generación de bombas de vacío secas de tornillo de alto rendimiento con un diseño especial para aplicaciones industriales muy exigentes.
El siguiente artículo explora los desafíos técnicos en el tratamiento de agua para la electrólisis del hidrógeno. Analiza requisitos clave como la calidad del agua, el monitoreo continuo y el control de parámetros de operación. En dicho contexto, veremos cómo...
La atracción de talento ha dejado de ser un proceso pasivo para convertirse en una prioridad estratégica en el sector industrial vasco. Así se puso de manifiesto en la jornada organizada en Bilbao por Aveq-Kimika, en colaboración con la iniciativa de transformación ekinBarri...
Techsolids ha publicado los resultados de su Encuesta de Coyuntura 2024 y Perspectivas 2025, especialmente relevante para dar a conocer la situación actual de un sector clave, ampliamente utilizado en múltiples industrias.
El consejero delegado de Enagás,Arturo Gonzalo, ha anunciado la firma del Grant Agreement para la recepción de 32,5 millones de euros de fondos europeos para los estudios e ingeniería la red troncal española de hidrógeno.
El miércoles 18 de junio a las 18:00 horas, se llevará a cabo un webinar sobre 'Instrumentación y estrategias de control de un horno de procesos', un evento clave para ingenieros y profesionales interesados en la automatización industrial.
Bajo el lema 'La cogeneración para un futuro industrial, eficiente, competitivo y descarbonizado', Acogen y Cogen España organizan el XXI Congreso Anual de Cogeneración, que en esta edición tendrá lugar el 14 de octubre en The Palace Hotel Madrid.
Las ferias Expoquimia y Equiplast, que se celebrarán del 2 al 5 de junio de 2026 en Fira de Barcelona, han iniciado una nueva etapa como plataformas estratégicas de negocio, innovación y conocimiento sectorial. Para ello, la organización ha constituido...
Comentarios